3- अवधि चलती - औसत - सूत्र
औसत पूर्वानुमान चलाना। परिचय जैसा कि आप अनुमान लगा सकते हैं हम भविष्यवाणी के कुछ सबसे प्राचीन तरीकों पर विचार कर रहे हैं लेकिन उम्मीद है कि ये स्प्रेडशीट में पूर्वानुमान लागू करने से संबंधित कुछ कंप्यूटिंग मुद्दों पर कम से कम एक सार्थक परिचय है। इस नस में हम जारी रहेंगे शुरुआत से शुरू और चलने के औसत पूर्वानुमान के साथ काम करना शुरू करते हैं। औसत पूर्वानुमान पूर्वानुमान चलाना हर कोई औसत मौके पर चलने से परिचित है, भले ही उनका मानना है कि वे सभी कॉलेज के छात्रों को हर वक्त अपने परीक्षण के बारे में सोचें, जहां आप जा रहे हैं सेमेस्टर के दौरान चार परीक्षाएं हैं, मान लीजिए कि आपको अपनी पहली परीक्षा में 85 मिले हैं। आप अपने दूसरे टेस्ट स्कोर के लिए क्या भविष्यवाणी करेंगे.तुम्हें क्या लगता है कि आपका शिक्षक आपके अगले टेस्ट स्कोर के लिए भविष्यवाणी करेगा.तुम्हें क्या लगता है कि आपके दोस्तों का अनुमान लगाया जा सकता है अपने अगले टेस्ट स्कोर के लिए. तुम्हें क्या लगता है कि आपके माता-पिता आपके अगले टेस्ट स्कोर के लिए अनुमान लगा सकते हैं। आईएंड्स और माता-पिता, वे और आपके शिक्षक आपसे मिलने वाले 85 के क्षेत्र में कुछ पाने की उम्मीद कर रहे हैं। ठीक है, अब हम यह मान लें कि अपने मित्रों को अपने स्वयं के प्रचार के बावजूद, आप खुद को अनुमान लगाते हैं और आंकड़ा है कि आप दूसरे टेस्ट के लिए कम अध्ययन कर सकते हैं और आपको 73 मिल जाए। अब आप सभी को लेकर चिंतित और निराश होने की उम्मीद कर रहे हैं कि आप अपने तीसरे परीक्षण पर पहुंचेंगे। चाहे उनके अनुमान के विकास के लिए दो संभावित संभावनाएं हों चाहे वे इसे आपके साथ साझा करेंगे.वे खुद से कह सकते हैं, यह लड़का अपने स्मार्टफोन के बारे में हमेशा धुआं उड़ रहा है वह अगर वह भाग्यशाली हो तो 73 को मिलेगा.शायद माता-पिता इससे ज्यादा सहायक बनने की कोशिश करेंगे और कहते हैं, ठीक है, तो अब तक आप 85 और 73 मिल चुके हैं, इसलिए शायद आप को 85 73 2 79 के बारे में जानने के बारे में पता होना चाहिए, शायद अगर आपने कम पार्टिसाइज़ किया हो और सभी जगह पर वीज़ल को सताते हुए और यदि आप बहुत अधिक पढ़ना आप उच्च अंक प्राप्त कर सकते हैं। इन अनुमानों में से दो वास्तविक हैं लिविंग औसत पूर्वानुमान। पहले अपने भविष्य के प्रदर्शन की भविष्यवाणी करने के लिए केवल आपके नवीनतम स्कोर का उपयोग कर रहा है यह डेटा के एक अवधि का उपयोग करते हुए चलती औसत पूर्वानुमान कहा जाता है। दूसरा भी चलती औसत पूर्वानुमान है, लेकिन डेटा के दो अवधियों का उपयोग करते हैं। कि आपके महान दिमाग को खत्म करने वाले ये सभी लोग आपको परेशान करते हैं और आप अपने स्वयं के कारणों के लिए तीसरी परीक्षा में अच्छी तरह से काम करने का फैसला करते हैं और अपने सहयोगियों के सामने उच्च अंक डालते हैं आप परीक्षा लेते हैं और आपका स्कोर वास्तव में एक है 89 प्रत्येक व्यक्ति को, खुद सहित, प्रभावित है। इसलिए अब आपके पास सेमेस्टर की अंतिम परीक्षा आ रही है और हमेशा की तरह आपको लगता है कि आप सभी को अपनी भविष्यवाणियां बनाने की आवश्यकता महसूस कर रहे हैं कि आप अंतिम परीक्षा में कैसे करेंगे, अच्छा, उम्मीद है कि आप देखेंगे पैटर्न. अब, उम्मीद है कि आप पैटर्न देख सकते हैं जो आपको सबसे अधिक सटीक मानते हैं। हम जब भी काम करते हैं, हमले अब हम आपकी नई सफाई वाली कंपनी में लौट आए हैं जो आपकी बहिष्कार वाली बहन ने शुरू की थी, जब हम काम करते थे, तो आपके पास कुछ पिछले बिक्री डेटा एक स्प्रैडशीट से निम्न अनुभाग द्वारा प्रतिनिधित्व किया गया है हम पहले तीन दिनों की औसत पूर्वानुमान चलते समय डेटा प्रस्तुत करते हैं। सेल C6 के लिए प्रविष्टि होना चाहिए. अब आप इस सेल सूत्र को C11 के माध्यम से अन्य कक्षों C7 से कॉपी कर सकते हैं। नोटिस कैसे औसत चालें सबसे हाल के ऐतिहासिक आंकड़ों पर, लेकिन प्रत्येक भविष्यवाणी के लिए उपलब्ध तीन सबसे हाल की अवधि का उपयोग करता है आपको यह भी ध्यान देना चाहिए कि हमें वास्तव में पिछली अवधि के पूर्वानुमानों को बनाने की आवश्यकता है ताकि हमारी सबसे हाल की भविष्यवाणी विकसित हो सकें यह निश्चित रूप से अलग है घातीय चौरसाई मॉडल में मैंने पिछले भविष्यवाणियों को शामिल किया है क्योंकि हम भविष्य की वैधता को मापने के लिए अगले वेब पेज में उनका उपयोग करेंगे। अब मैं औसत अवधि के चलते दो अवधि के लिए समान परिणाम पेश करना चाहता हूं। सेल सी 5 के लिए प्रवेश होना चाहिए. अब आप इस सेल सूत्र को अन्य कोशिकाओं C6 से C11 तक कॉपी कर सकते हैं। नोटिस कैसे अब प्रत्येक भविष्यवाणी के लिए केवल दो सबसे हालिया टुकड़ों का उपयोग किया जाता है फिर मैं इसमें शामिल है उदाहरण के उद्देश्यों के लिए पिछले पूर्वानुमान और पूर्वानुमान सत्यापन में बाद में उपयोग के लिए। कुछ अन्य चीजें जो ध्यान देने योग्य हैं। मी-अवधि की औसत औसत पूर्वानुमान केवल मी के सबसे हाल के डेटा मानों को भविष्यवाणी करने के लिए उपयोग किया जाता है और कुछ नहीं आवश्यक है पिछली भविष्यवाणियां करते समय, एम-अवधि की औसत पूर्वानुमान के लिए, ध्यान दें कि पहली बार भविष्यवाणी की अवधि 1 एम में होती है। जब हम अपना कोड विकसित करते हैं तो इन दोनों मुद्दे बहुत महत्वपूर्ण होंगे.संभावना औसत समारोह का विकास अब हमें विकसित करने की आवश्यकता है चलती औसत पूर्वानुमान के लिए कोड जो अधिक लचीले ढंग से इस्तेमाल किया जा सकता है कोड निम्न सूचना देता है कि इनपुट अवधि में आप उपयोग करना चाहते हैं और ऐतिहासिक मूल्यों की सरणी के लिए हैं, आप इसे जो वही कार्यपुस्तिका में संग्रहीत कर सकते हैं। कार्य MovingAverage ऐतिहासिक, NumberOfPeriods के रूप में सिंगल घोषित करने और चर को प्रारंभ करने के रूप में Dim आइटम के रूप में चर अंकीय काउंटर के रूप में पूर्णांक मंद संचय के रूप में एकल मंद ऐतिहासिक आकार पूर्णांक के रूप में। चर को शुरू करना काउंटर 1 संचय 0. ऐतिहासिक सरणी के आकार का निर्धारण ऐतिहासिक सिमित। काउंटर 1 के लिए संख्या - अभियान अवधि। सबसे हाल ही में देखे गए मूल्यों की उचित संख्या को संचित करना। आकलन संचय ऐतिहासिक ऐतिहासिक सिज़िज़ - संख्याऑफ़परोड्स काउंटर। मैव्वेज एवेन्यूशन नंबरऑफपेरियोड। कोड को क्लास में समझाया जाएगा आप स्प्रेडशीट पर फ़ंक्शन की स्थिति बनाना चाहते हैं, ताकि गणना के परिणाम दिखाई दें जहां यह होना चाहिए चलती औसत और भारित चल औसत के बीच अंतर क्या है। ऊपर की कीमतों के आधार पर, 5-अवधि की चलती औसत, ऊपर दिए गए सूत्र के आधार पर गणना की जाएगी। ऊपर समीकरण के आधार पर, सूचीबद्ध अवधि में औसत मूल्य ऊपर था 90 66 चलती औसत का उपयोग करना, मजबूत मूल्य में उतार-चढ़ाव को नष्ट करने के लिए एक प्रभावी तरीका है महत्वपूर्ण सीमा यह है कि पुराने डेटा से डेटा अंक डेटा सेट की शुरुआत के निकट डेटा बिंदुओं की तुलना में किसी भी तरह अलग नहीं भारित होते हैं यह वह जगह है जहां भारित चलती औसत खेलने में आती है वे आभासी औसत से अधिक वर्तमान डेटा बिंदुओं को भारी भार देते हैं क्योंकि वे मीटर हैं दूर अतीत में डेटा अंक की तुलना में प्रासंगिक अयस्क भार की राशि 1 या 100 तक जोड़नी चाहिए सरल चलती औसत के मामले में, वेटिंग समान रूप से वितरित की जाती है, यही वजह है कि वे उपर्युक्त तालिका में नहीं दिखाए जाते हैं। एएपीएल की ओर से। औसत मूविंग औसत। भारित मूविंग औसत हाल की कीमत पर अधिक महत्व देता है इसलिए, वेटेड मूविंग एवरेज सामान्य सरल मूविंग औसत की तुलना में मूल्य में तेजी से प्रतिक्रिया करता है सरल मूविंग औसत एक बुनियादी उदाहरण 3-भार कितना भारित होता है मूविंग एवर की गणना नीचे दी गई है। पिछले 3 दिनों के लिए मूल्य 5, 4 और 8 रहा है। क्योंकि 3 अवधियां हैं, सबसे हाल के दिन 8 को 3 का वजन मिलता है, दूसरा हाल के दिन 4 को 2 का वजन मिलता है , और 3-अवधि 5 का अंतिम दिन सिर्फ एक का वजन प्राप्त करता है। गणना के अनुसार निम्नानुसार है 3 x 8 2 x 4 1 x 5 6 6 17. भारित मूविंग मूविंग 6 6 का औसत मूल्य सरल मूविंग औसत से तुलना करता है 5 67 की गणना ध्यान दें कि बड़ी कीमत कैसे हाल के दिनों में हुई 8 की वृद्वि वेटेड मूविंग औसत गणना में बेहतर ढंग से देखी गई थी। वाल-मार्ट के स्टॉक के नीचे दिए गए चार्ट में 10-दिन भारित मूविंग औसत और 10-दिन के सरल मूविंग औसत के बीच दृश्य अंतर को दिखाया गया है। सामान्य मूविंग औसत संकेतक के साथ भारित मूविंग औसत सूचक के लिए सिग्नल खरीदने और बेचने की प्रक्रिया सरल मूविंग औसत देखती है।
Comments
Post a Comment